List the sample space for compound events using organized lists, tables, or tree diagrams.
?
?
?
Following the introduction to compound events in Lesson 6, in this lesson students learn how to organize the sample space for compound events. Within each organizational tool, there is a structure embedded that ensures each possible outcome is accounted for (MP.7). Ensure students see and can utilize this structure as they create their own organized spaces.
?
An experiment involves a spinner and a fair coin, shown below. The spinner will be spun one time, and the coin will be flipped one time.
What are all of the possible outcomes for this experiment? Organize your information in a list, table, or tree diagram.
Imagine a game in which two fair four-sided (tetrahedral) dice are rolled simultaneously. These dice are in the shape of a pyramid, and when a die is rolled, the outcome is determined by the side that lands face down. Suppose that for these two dice, the possible values (corresponding to the four sides of the die) that can be obtained from each die are as follows:
Die #1: 1, 2, 3, or 4
Die #2: 2, 4, 6, or 8
a. A certain game determines the movement of players' game pieces based on the SUM of the numbers on the face down sides when two dice are rolled.
What is the probability of obtaining a sum of 5?
What is the probability of obtaining a sum that is more than 5?
What is the probability of obtaining a sum that is at most 5?
What is the probability of obtaining a sum that is at least 5?
What is the probability of obtaining a sum that is no less than 5?
b. Now consider the case where the DIFFERENCE in the numbers on the face down sides when two dice are rolled is important to the game. Unless the two die values are the same (in which case the difference is 0), the difference for purposes of this game will always be computed as the larger number value rolled minus the smaller number value rolled. In this way, the difference value for any roll of the two dice will always be positive or 0.
What is the probability of obtaining a difference of 5?
What is the probability of obtaining a difference that is more than 5?
What is the probability of obtaining a difference that is less than or equal to 5?
Tetrahedral Dice, accessed on June 14, 2017, 2:44 p.m., is licensed by Illustrative Mathematics under either the CC BY 4.0 or CC BY-NC-SA 4.0. For further information, contact Illustrative Mathematics.
At an ice cream store, a customer can make a sundae that includes ice cream, one candy topping, and one liquid topping. The options are listed below.
Ice cream flavors | Candy toppings | Liquid toppings |
Chocolate | Butterfinger | Hot fudge |
Mint chip | M&M's | Marshmallow |
Vanilla | Gummy bears | |
Reese's |
?
The following resources include problems and activities aligned to the objective of the lesson that can be used to create your own problem set.
?
An experiment involves flipping a fair coin and rolling a fair six-sided die.
?